SARS-like WIV1-CoV poised for human emergence.

نویسندگان

  • Vineet D Menachery
  • Boyd L Yount
  • Amy C Sims
  • Kari Debbink
  • Sudhakar S Agnihothram
  • Lisa E Gralinski
  • Rachel L Graham
  • Trevor Scobey
  • Jessica A Plante
  • Scott R Royal
  • Jesica Swanstrom
  • Timothy P Sheahan
  • Raymond J Pickles
  • Davide Corti
  • Scott H Randell
  • Antonio Lanzavecchia
  • Wayne A Marasco
  • Ralph S Baric
چکیده

Outbreaks from zoonotic sources represent a threat to both human disease as well as the global economy. Despite a wealth of metagenomics studies, methods to leverage these datasets to identify future threats are underdeveloped. In this study, we describe an approach that combines existing metagenomics data with reverse genetics to engineer reagents to evaluate emergence and pathogenic potential of circulating zoonotic viruses. Focusing on the severe acute respiratory syndrome (SARS)-like viruses, the results indicate that the WIV1-coronavirus (CoV) cluster has the ability to directly infect and may undergo limited transmission in human populations. However, in vivo attenuation suggests additional adaptation is required for epidemic disease. Importantly, available SARS monoclonal antibodies offered success in limiting viral infection absent from available vaccine approaches. Together, the data highlight the utility of a platform to identify and prioritize prepandemic strains harbored in animal reservoirs and document the threat posed by WIV1-CoV for emergence in human populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving beyond metagenomics to find the next pandemic virus.

Movements of viruses from animals to humans underlie outbreaks of diseases, such as Ebola hemorrhagic fever, influenza, and Middle East respiratory syndrome. The severe acute respiratory syndrome (SARS) virus pandemic of 2003 was caused by a novel coronavirus (CoV) that originated in Chinese horseshoe bats (1). Results of sequence analyses have shown that viruses related to SARS-CoV continue to...

متن کامل

Coronavirus 2 Acute respiratory syndrome: Emergence, Evolution and thrapeutic prevention strategies

The ongoing outbreak of COVID-19 that began in Wuhan, China, has constituted a Public Health Emergency of International Concern, and spread all over the world. In a phylogenetic network analysis of human severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) genomes, three central variants were distinguished by amino acid changes, which named A, B, and C; with A being the ancestral type a...

متن کامل

Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection

UNLABELLED Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a l...

متن کامل

Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus

A large number of SARS-related coronaviruses (SARSr-CoV) have been detected in horseshoe bats since 2005 in different areas of China. However, these bat SARSr-CoVs show sequence differences from SARS coronavirus (SARS-CoV) in different genes (S, ORF8, ORF3, etc) and are considered unlikely to represent the direct progenitor of SARS-CoV. Herein, we report the findings of our 5-year surveillance ...

متن کامل

Genome-wide computational prediction of miRNAs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed target genes involved in pulmonary vasculature and antiviral innate immunity

The current outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)in China threatened humankind worldwide. The coronaviruses contains the largest RNA genome among all other known RNA viruses, therefore the disease etiology can be understood by analyzing the genome sequence of SARS-CoV-2. In this study, we used an ab-intio based computational tool VMir to scan the complete geno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 11  شماره 

صفحات  -

تاریخ انتشار 2016